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Abstract. Social communities of smartphone users have recently daigaifi-
cant interest due to their wide social penetration. Theiegipbns in this domain,
however, currently rely on centralized or cloud-like atehtures for data sharing
and searching tasks, introducing both data-disclosurgarfdrmance concerns.
In this paper, we present a distributed search architedturintelligent search
of objects in a mobile social community. Our framework, emrsmartOpt is
founded on arin-situ data storage model, where captured objects remain local
on smartphones and searches then take place over an emnelfigilti-objective
lookup structure we compute dynamically. Qd®-QRTstructure optimizes sev-
eral conflicting objectives, using a multi-objective ew@unary algorithm that
calculates a diverse set of high quality non-dominatedt®uis in a single run.
Then a decision-making subsystem is utilized to tune théeexed preferences of
the query user. We assess our ideas both using trace-driperi@ents with mo-
bility and social patterns derived by Microsoft’s GeoLifeject, DBLP and Pics
‘n’ Trails but also using our real Androi8martP2P system deployed over our
SmartLaB testbed of 40+ smartphones. Our study reveals that Smayi€lgs
high query recall rates of 95%, with one order of magnitudss éme and two
orders of magnitude less energy than its competitors.

1 Introduction

The widespread deployment of smartphone devices and thenadf/social networks
have broughtarevolution in social-oriented applicatiang services for mobile phones.
A Smartphone Social Network is a structure made up of indiisl carrying smart-
phones, which is used for sharing and collaboration [1],(Centent, interests, com-
ments and places.) Sites such as Google Latitude, Gowallas§uare, Facebook Places
and Loopt enable users to report on Who-What-When-Whenmatgveheck-in to fa-
vorite places, provide their location history, etc. Fortamee, users of Facebook can
upload geo-located photos on-the-go and tag (i.e., comm@photos with the given
service exceeding over 50 billion photos as of 07/2010. ABsé&arch projects that
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Fig. 1. A visual illustration of theMulti-Objective Query Routing Tree (MO-QRS3tyucture pro-
posed in this work. Our SmartOpt Framework constructs MOFGRuctures optimized on sev-
eral conflicting objectives (i.e., energy, time and rec&@ir structure can be utilized for finding
objects (e.g., images, videos, etc.) in a social neightmathaithout the necessity of having the
objects disclosed to the social network provider.

Smartphone Social Network applications will reach almd® fnillion users in 2013
while academic efforts in this direction are also underw]

Additionally, there is already a proliferation of innowagiapplications founded on
crowd-sourcing (e.g., [8]) and opportunistic/particpgtsensing [7, 12, 5], where ap-
plications can task mobile nodes in a given region to prouidi@mation about their
vicinity using their sensing capabilities (e.g., noisep®§B39], etc.). Another example
is road traffic delay estimation [45] using WiFi beams cdkekby smartphone devices
rather than invoking expensive GPS acquisition and roadition (e.g., PotHole [17].)

Currently, the bulk of social networking services, destfer smartphone commu-
nities, rely on centralized or cloud-like architecturas plarticular, in order to enable
content sharing and community search, the smartphonetligrioad their captured
objects (e.g., images uploaded to Twitter, video tracesagsd to Youtube, etc.) to
a central entity that subsequently takes care of the cowiginization and dissem-
ination tasks. Although certain types of objects, such ashiased micro-blogs, will
behave reasonably well under this model, significant chg#s arise for captured mul-
timedia and sensor data (e.g., data captured by the camieraphmone, accelerometer,
WiFi RSS readings, etc.) We claim that the centralizatiothete object types will be
severely hampered in the future due to the following consisa

i. Data-Disclosure Constraints: Continuously disclosing user-captured objects to a
central entity might compromise user privacy in very sesisay$. Even Google’s
CEO Eric Schmidt mentioned recentlthat“... every young person one day will

5 “Google Apologizes for Buzz Privacy”, David Coursey, PC WidBusiness Center (online),
Feb. 15th, 2010.
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line), Aug. 14th, 2010.
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Fig. 2. A Pareto Front example of the MO-QRT problem. Solid circlggresent non-dominated
QRTs.

be entitled automatically to change his or her name on rezghidulthood in order
to disown youthful hijinks stored on their friends’ sociatdia sites.”

ii. Energy Constraints: Smartphones have asymmetric communication mediums with
a slow up-link, thus by continuously transferring massiveants of data to a query
processor, through WiFi/3G/4G connections, can both dephe precious smart-
phone battery faster, increase query response times, bulsa quickly degrade
the network health

In this paper, we present techniques to enable smartphans kesep their data
in-situ, for data-disclosure and performance reasons, offerirtheasame time high
performance search capabilities over other user’s dataeirsdcial community. When
a user invokes a search to find an object of interest, ‘@®@tures of street artists per-
forming in Manhattan”(see Figure 1), the user first download®aery Routing Tree
(QRT)X from a SmartOpt server. ThE structure resembles spanning tree structures
constructed during searches in unstructured (Mobile)-Re@eer (P2P) systems [19,
47,53,54] or aggregation trees used in sensor networkb{@]Y is tuned to opti-
mize several objectives concurrently during searchesinatphone network. The tree
structuret’ provides better scalability than having the query nodeargll nodes that
might contain an answer. This intrinsic characteristi¢edéntiates P2P architectures
from respective centralized architectures.

In particular, the MO-QRTs proposed in this work are optiizo (i) minimize
energy consumption during search; (i) minimize the quesgponse time in conduct-
ing the search; and (iii) maximize the recall rate of the ug@ry. Most existing works

8 “«Customers Angered as iPhones Overload AT&T”, Jenna WarthiBhe New York Times
(online), Sept. 2nd, 2009.



optimize the objectives (i-iii) individually, or optimizene and constrain the comple-
mentation. This often results in “poor” solutions since tigectives are conflicting
and a decision maker needs an optimal trade-off set, conyrkmown as thePareto
Front (PF)in the context oMulti-Objective Optimization (MOQO)igure 2, shows an
example where each point represents a QRT solution.2zFbeordinate of a point is
the QRT's overall energy consumption, theoordinate is the QRT’s overall response
time in conducting the search and theoordinate is the QRT’s overall recall to the
query (i.e., percentage of relevant answers returned, lsbalefined more rigorously
later.) A QRT X dominates a QRTY, if X has lower energy consumption, requires
less response time and provides higher recall rate Jhahthe same time. The Pareto
Front is composed of all QRTs that are not dominated by othieas is, the black dots
in Figure 2. A major issue in MOO is that there is no single p¢aalled solution
thereafter) that can optimize all objectives simultangouhe literature hosts several
approaches that can efficiently deal with multiple conftigtobjectives and provide a
set of non-dominated solutions in a single run, such as tH&-@bjective Evolutionary
Algorithms (MOEASs) [14] that have been shown very effectivéhe past. An operator
that has the same characteristics as those of MOO, but nraicéyved attention in the
database community for disk-resident data and appliedteordaning problems, is the
skyline operator [6, 10, 20, 35, 58]. Skyline operators aggnty classified as central-
ized [10, 20, 31, 35, 44] or distributed [6, 21, 48, 49, 51, 38je former aims to collect
all the data from multiple resources to a centralized sewhbich in turn retrieves the
skyline (i.e., the global set of non-dominated solutioms)the distributed case, each
source initially retrieves a local skyline and then attesrtptobtain the global skyline.
However, in most cases the skyline operators are based tamsytic approaches (i.e.,
deterministic or exact) for dealing with disk-residentalgtving in most cases exact
skyline solutions. Using a systematic approach in our cas®i efficient due to the
high complexity and high dimensionality of the proposedybem, as discussed later in
Section 3.

This paper builds on our previous work in [28], in which we ggBted the pre-
liminary design of the SmartOpt framework. In this paper,imteoduce several new
improvements and extensions that are summarized as follows

— We extend the SmartOpt framework with new features inalgBiecision Making
during which a non-dominated QRY can be selected from the Pareto Front based
on some user-preference; ddearchingduring which the QRT solutioA’ is prop-
agated to the network using a text-based Peer-to-Peerrmpagrtion protocol.

— We present a detailed description of the SmartOpt ardhitedncluding insight in-
formation on all its components and internal proceduregyibtocol, itsSmartP2H30]
prototype system and o@martLalj29] platform of 40+ real smartphones that has
been utilized in our evaluation.

— We introduce an elaborate experimental study and solidréxental evidence for
the motivation and efficiency of our propositions using batiace-driven experi-
mental methodology with mobility and social patterns dediby Microsoft's Ge-
oLife project, DBLP and Pics ‘n’ Trails, but also using our &t#P2P real system
developed in Android and deployed over our SmartLab testtbd@+ smartphone
devices. We also assess the optimality of our multi-objeatptimizer (MOEA/D



and NSGA-II) and different peer-to-peer search techniqbesadth-first-search,
random walkers and SmartOpt trees.)

— We provide background and related work on the followingrfareas related to
the scope of this papeNobile P2P SearchQuery Routing Trees (QRTsky-
line queries(centralized, distributed) anilulti-Objective OptimizationWe also
qualitatively explain the differences and similaritiestbé referenced techniques
compared to the SmartOpt framework.

The overall contributions of this paper to the state-ofdineare the following:

— We propose th®lulti-Objective Query Routing Tree (MO-QRarpoblem for Smart-
phone Social Networks and formulate it as a Multi-objectgtimization Prob-
lem (MOP), which minimizes the energy consumption and timerlbead during
searches but also concurrently maximizes the recall raaesfers.

— We propose a principled framework, coined SmartOpt, faigiéng an efficient
algorithm for the MO-QRT problem composed of an optimizehich is based
on a specialized Multi-Objective Evolutionary Algorithraged on Decomposition
(MOEA/D) combined with a posterior decision maker and a Red?eer search
approach. We propose several complementary techniqudes$aning an efficient
and effective approach as introduced in Section 4. We hageddveloped a real
prototype system, named SmartP2P, for the ubiquitous Addperating System
that shows how the proposed framework can be utilized incaadlitions.

— We evaluate ousmartOpt Frameworkising mobility and social behavior patterns
derived from GeolLife [57], DBLP [13] and Pics ‘n’ Trails [482] using both a
trace-driven experimental methodology and a real execwi@ur SmartP2P pro-
totype over our SmartLab testbed.

The remainder of the paper is organized as follows: Sectigm@ides our system
model and defines the problem in a rigorous manner. Sectioovddes the background
and overviews the related work. Section 4 introduces ther&paframework and its
internal modules composed of various operators. Sectiogt&ild our SmartP2P pro-
totype system and protocol as well as introduces SmartLabpmgramming cloud
of 40+ Smartphones. Our experimental methodology andteeatg presented in Sec-
tion 6, while Section 7 concludes the paper.

2 System Model and Problem Formulation

In this section, we outline our system model and formulagegatoblem SmartOpt aims
to solve. A table of respective symbols is shown in Table 1.

2.1 System Model

Overview: LetC, denote a social networking service that maintains cdptifz¢ pro-
filesP = {p1,p2, ..., pam }, for each of its\/ subscribed users (i.éf,= {u1, ua, ..., ups}).
The profiles record basic user details, authenticationesrals, the user interests (e.g.,



traveling, sports, music, etc.) and friendship relatidre tefine the conceptual social
network graphg among theM users. In our setting, a usef (i < M) uses a smart-
phone (or tablet) device to both perform its day-to-dayvitéds but also to capture
objects of interest at arbitrary moments (e.g., “take aup&ecbf the Liberty Statue”).
Each objecb;;, might be tentatively'tagged” with GPS information and other user
tags (e.g.;lat: 40.689201355, long: -74.0447998047, tags: “Statuiberty Ellis Is-
land”).

Connection Modalities. Eachu; features different Internet connection modalities that
provide intermittent connectivity t6 (e.g., WiFi, 2G/3G/4G). Each; also features
peer-to-peer connection modalities that provide conwiggtio nodes in spatial prox-
imity (e.g., Bluetooth, Portable WiFi or upcoming NFC awaile in Android)[8]. We
assume that whemn; is connected t@, thenC is aware ofu;'s absolute location (e.g.,
GPS) oru;’s relative location (e.g., the cell-ids withiry's range, WiFi RSSI indicators
within u;’s range or other means utilized for geo-location). Notfcat each of the con-
nection modalities comes at different energy and datafeeanate characteristics. For
example, we've profiled an Android-based HTC Hero and fouvad WiFi consumes
39mWi/byte, 3G consumes 24mW/byte and Bluetooth consuma¥\idyte. Addition-
ally, Bluetooth had a symmetric data rate of 864kbps, whilei\&n asymmetric data
rate of 123Kbps (up) and 2Mbps (down) and 3G an asymmetri rdée of 2.7Mbps
(up) and 7.2Mbps (down). The nominal data rates for the afergioned modalities
might differ significantly, as this is also validated in [2&]ainly due to the deployment
environment. Moreover, while the power consumption on fiffereént kinds of radios
can be comparable, the energy usage for transmitting a fixediat of data can differ
an order of magnitude because the achievable data rategsm ititerfaces differ sig-
nificantly [36]. Finally, the availability characterisiof these kinds of modalities can
vary significantly. The penetration of some form of celludamilability (e.g., WiFi or
3G) is significantly higher than Bluetooth, on average. Thuyoading or download-
ing large data items using Bluetooth can be more energyiezifithan using a radio
network, but Bluetooth may not always be available and itisroslower.

Search Techniques: Let an arbitrary uset; (j < M), be interested in answering
a query Q over its social neighborhood (i.e., nodes connected,teither directly
or through intermediate node§) (G’ C G). For instance, le@ be a depth-bounded
breadth first search query ovey’s neighbors in the graph (i.e., inG’). This kind of
conceptual query can be realized in the following manners:

1. Centralized Search (CST:his algorithm assumes that the multimedia objects and
tags are all uploaded 16 prior query execution. Onc@ is posted( can locally
derive the answers (using its local tag database) and rétaranswers ta;. This
model, which is currently utilized by all social networkisges (such as Twitter,
Youtube, Loopt, etc.), performs well in terms of query rasgmtime but performs
poor both in terms oflata disclosurdi.e., 0;;. objects and tags need to be continu-
ously disclosed t@) and performance (i.e., data transmission of large objacts
radio links is both energy demanding and time consuming.)

% Without loss of generality we assume simple Boolean keywmeties over tags.



Table 1. Table of Symbols

|Symbo|Description |
(Centralized) Social Networking Service

Users of the Social Network (i.€{31, u2, ..., uar })
User Profiles stored by for s (i.e.,{p1, p2, ..., DM })
Objectk (images, videos, etc.) recorded by user
Conceptual Graph connecting the user&in

Social Neighborhood of some arbitrary user.

Query conducted in social neighborhogd(G’ C G).
Query Routing Tree constructed to answr

Users that are connecteddaluring the execution of.

NP TS ES BRSNS

2. Distributed Breadth-First-Search (BFSThis algorithm assumes that the objects
and tags are all stored in-situ (on their owner’s smartphgre order to realize the
search task, a querying node downloads from the query processor the addresses
(e.g., IP:PORT address) of its first line neighboring nodes,G” C G’). u; then
contacts the nodes i§” in order to conduct a depth-bounded breadth first-search
in a P2P fashion (i.e., using a pre-specified Query Time-ive-Qrr; > 0). Once
some arbitrary node, € G’ receivesQ, it both looks at its local tags, in order to
identify an answer and also forwards the request further @it;-;, becomes zero.

Although the BFS approach improves the data-disclosumizhek of theCSap-
proach, it is quite inefficient during search. In particul@rhas to go over a random
neighborhood rather than a neighborhood that is contdytrelated to the query. For
instance, in our Liberty Statue query example, we would hanegerred querying a
friend living in lower Manhattan rather than a person livingalifornia (as the former
would have a higher probability of capturing the statuepAif«; had two friendsy,
andu,, both living in lower Manhattan, witlk,, being in spatial proximity ta; during
the query (i.e., within a few meters), whilg, being far away, would have madg a
better choice for posting the query (as could have been queried through a local link
such as Bluetooth).

2.2 Optimization Problem Formulation

The Multi-Objective Query Routing Tree (MO-QRStyucture, proposed in this paper,
improves the search operation of the BFS algorithm by optirgi the neighbor se-
lection process. In particular, a node downloads fiora QRT X that is optimized
according to the following formulatiorGiven a social network of uset$, a list of ac-
tive userd/’ and their coordinates, the profilé® of these users and a queg, posted
by an arbitrary user;, the query processor aims to optimize &rstructure using the
following obj ectives:



Objective 1: Minimize the totaEnergyconsumption of’
Energy(X) = min Z e(Uq, up) 1)
V(Uq,up) EX(XCU")

where,e(u,, up) denotes the energy consumption for transmitting one bitatéd dver
the respective edge (WiFi, Bluetooth and 3G).

Objective 2: Minimize theTime overhead ofY
Time(X) = min(maz(umub)e;(t(ua, up)) (2)

where,t(uq, u,) denotes the delay in transmitting one bit of data over thpeese
edge.

Objective 3;: Maximize theRecallrate of X

Relevant(Q) N Retrieved(X, Q)
Relevant(Q)

Recall(X, Q) = max( ) (3)

whereRelevantQ) denotes the set of all objectsifi that are relevant t@, formally

as:

RelevantQ) = U (0ak))s

Vo Vk(uq €U’

given thatu,’'s profile (denoted ag,) contains terms found i@. On the other hand,
Retrieved{’,Q) denotes the set of objects that have been retrieved in respgor®
over structureY, formally as:

Retrieved’, Q) = U (0ak)),

Yo Vk(uq €X)

again given thap, contains terms found i@.

In a MOP, there is no single solutictithat optimizes all objectives simultaneously,
but a set of trade-off candidates. The set of trade-off &mist commonly known as the
Pareto Front (PF), is often defined in terms of Pareto Optiyndlhat is, considering
a maximization MOP with: objectives: a solutiotr™ is considered non-dominated or
Pareto optimal with respect to another solutniff vi € {1,...,n},X; > V; AJi €
{1,...,n}: X; > Y, thisis denoted ag&” > ).

In our previous works [3,4,53], we have studied each of thdividual objec-
tive functions in isolation. For example, in [3] and [4] wevieacomputed the en-
ergy consumption based on the energy model of the TelosBoselevice and the
CC2420 RF Transceiver including all its power modes (i.eceive, transmit, idle,
etc.) More specifically, the energy formula used was the¥dlhg: Energy(Joules) =
Volts x Amperes x Seconds (e.g., the energy required tormarg) bytes atl .8V is
1 1.8V x 23 x 1073 A x 30bytesx8bits/250kbps= 39.7). The experimental results of
these works were validated using PowerTossim, which is kmelwn tool for realis-
tically measuring energy in various embedded deviceshEuriore, in [4] the critical



path objective, which is similar to the time objective ofsthiork, was calculated using
an in-network recursive algorithm that took into accountuanber of real properties
such as the link activity and the number of collisions at th&Qayer of each node.
In the same manner, these works utilized a number of othectbgs (e.g., network
lifetime, query response time, quality of data (accuraeyall)) calculated in a realistic
manner and validated through well-established simulatni$3], we have tackled the
recall objective in P2P systems by developing a real systeined PeerWare.

3 Background and Related Work

In this section, we provide related research work that li¢gseafoundation of the Smar-
tOpt Framework.

M obile Peer-to-PeerIMANET search can be roughly classified intdBl)nd Search [19,
32,52], where mobile peers propagate the query using arphistwated (e.g., random,
TTL property) approach to as many nodes in the network astgesand ii) Informed
Search [9, 24, 25, 34, 40, 47], where mobile peers use serr@ritication information
to forward queries to specific nodes in the network. The psefdosearch approach
presented in this paper belongs to the latter class with iffierehce that we utilize
a centralized approach where mobile peers (i.e., smargpbenices) subscribe to a
centralized registry. Similar to [40], we utilize a contesnmmary mechanism (i.e., pro-
file) for discovering mobile peers that will participate irgaery Q by the centralized
node. However, in our setting, the content summary of eadbilmpeer is stored at the
centralized node upon its registration thus allowing npldtiquery users to use this in-
formation without requiring the retransmission of the amtsummary to each mobile
peer. InPeerDB[34], the authors propose an agent-assisted query pragessproach
that has the ability to reconfigure the network based on dpéition criteria (e.g., chan-
nel bandwidth). Although, this can increase the perforrearftche system (e.g., mini-
mize energy cost, increase time performance), itimposaghechst for maintaining the
agents at each mobile node Llacation-Aided Routing (LAR25], the authors take into
account the physical location of a destination mobile nogl@ching in this way only a
set of nodes close to the query user, which maximizes thempeahce of a query (i.e.,
time, energy). IrmartOpt we additionally augment each mobile node with a profile,
which further decreases the number of participating nodemby nodes that support a
given query will contribute to the results.

Query Routing Trees (QRTs) in smartphone networks have recently received attention
in the context of people-centric applications [7]. Suchlaagions feature continuous
sharing of data that can be utilized to create a number oélgothtive scenarios (e.qg.,
BikeNet [16]). A central component to realize such scersigdhe availability of some
high-level communication structure, such as QRTSs. In [#6],authors present a tech-
nique that profiles the activities of the user in order to mize the number of commu-
nication packets transmitted in the smartphone networkohtrast to [46], which fo-
cuses on a single objective of energy, our proposed tecarfiapuses on two additional
objectives: time overhead and recall. In [18], the authoreyfQRTs using flooding in
order to continuously track mobile events and relay datdéoquery user. Similarly
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to the BFS algorithm, presented earlier, this approactesuffom significant energy
waste as all nodes continuously and actively participatdhénsmartphone network.
QRTs have also been extensively studied in the context dfuciared P2P system
(e.g., IS, >RES, RBFS, Random Walkers, APS, etc. [53]), yet none of thesaaking
into account the resource-constrained nature of smargphetworks. Similarly query
routing structures proposed for Sensor Networks, such & EAC and MHS [2], fo-
cus on building routing trees that are near-optimal (in eesfo a single objective) but
expose good aggregation and data synchronization prepettiring continuous data
percolation to a centralized sink. On the other hand, oumsgetleals with snapshot
query cases and multi-objective query optimization for gpteone social networks.

Skyline operators are mainly used by the database community [3&}tieve a global
set of non-dominated solutions, i.e., glg/linesimilar to the Pareto Front of MOO, of a
skyline (or Pareto) query in a centralized or a distributexhrer. The literature, which
focuses on centralized databases, aims at collectingfafnration from all resources
to a centralized node, which in turn retrieves the globaliskyusing systematic ap-
proaches. For example, Tan et al. [44] adopted a Bitmapesgggroach to retrieve the
skyline using binary operations in a bit-string represénita as well as a B-tree based
algorithm that further improves its predecessor respopseds Block Nested Loop and
Sort-filter skyline (SFS) [10] approaches search the pamtse data set exhaustively
and retrieve the skyline points based on their dominatiokireg, having as a main
difference that the latter initially sorts the points of ith&ta set in an ascending order
before the BNL approach is applied. Similarly, Godfrey ef20] extended the work
in [10], by proposing the Linear-estimation-sort (LESSjaithm that reduces the cost
of SFS by eliminating a portion of the database during sgrtfapadias et al. [35] and
Kossman et al. [31] have tackled the centralized skylirngened! challenge considering
R-tree nodes, using a branch-and-bound and a NN progreggiveaches, respectively.

Moreover, several attempts have been made in distributgthskretrieval, often
using approaches for locally partitioning the data setseeivertically or horizontally
and then retrieving the global skyline after collectingatlal skylines in a central node.
For example, Balke et al. [6] have proposed a verticallyipamied distributed skyline
algorithm, that performs a round-robin based sorting Uitding all non-dominated
points for each particular database. Examples of disteibatgorithms that are based
on horizontally partitioning a database include [48,49,&1d [58]. Particularly, Wu
et al. [51] separates the database region into rectangudaes and maps each server
to a region. Each server is therefore responsible for finttiegskyline of their local
data region and then by considering some precedence redatie global skyline is
obtained. Similarly, Wang et al. [49] and Vlachou et al. [p8)posed an algorithm for
skyline retrieval in P2P networks by organizing the peeesinverlay network and sub-
spaces, respectively. Zhu et al. [58] has recently propaseddback-based distributed
skyline (FDS) algorithm that supports horizontal partis®f the data sets of geograph-
ically distant servers. All aforementioned studies, hosveprocess the local skylines
in servers having no issues in memory and energy consumpgtiorucial resource in
mobile smartphone devices that considered in our case.

More closer to our work is [21], in which the authors study Isig retrievals on
mobile devices of Mobile Ad-hoc NETworks (MANETS). The aoth propose an al-
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gorithm that iteratively probes the mobile devices to cardta local subtree skyline,
i.e., points that are in the skyline, rooted at each indigldievice. The global sky-
line is retrieved after probing all mobile devices. Genlgrdhe dimensionality of the
problems tackled in all aforementioned cases is low. Fomgte, finding properties to
optimize the distance from the beach and the price of a ptpjgea common problem
tackled in several skyline cases [31, 35, 58]. One solutiothése kinds of problems
in the decision space (e.g., the location (2-D) of a propérag a one-to-one mapping
with one solution in the objective space (e.g., distancenftbe beach and price). In
these cases, one can easily adopt systematic approacies a# solutions and find
the real skyline. However, in our case, obtaining a QRT bea#&lg some or allVv
active smartphones, increases the dimensionality (g .he up t@ x N, considering
only thex, y coordinates of the smartphones) of the search space fdnoigta single
QRT and thereinafter a solution in the objective space,(thg.energy, time overhead
and recall of that particular QRT.) This increases the cexipl of these kinds of prob-
lems, including the fact that in most cases there is not emgrkaowledge about the
real Pareto Front that should be obtained. Therefore, ie@ly impossible to use a
systematic approach and search all QRTs (i.e., all conmbimabf smartphones) for
dealing with the proposed problem. This is the major reasdmnawstochastic approach,
such as an Evolutionary Computation approach, might be aympeopriate.

Multi-Objective Optimization (MOO) (a.k.a. multi-criteria or multi-attribute opti-
mization) is the process of simultaneously optimizing twarmre conflicting objec-
tives subject to certain constraints. MOO has numerousiagijgns in virtually all
domains of sciences, engineering and economics. MOO isitivedly new area in mo-
bile/wireless networks, in general, and in Smartphone ekain particular. In MOO,
it is difficult to apply an existing linear/single objective systematic method to ef-
fectively tackle a Multi-objective Optimization ProblerviQP), giving a set of non-
dominated solutions. This is mainly due to the increasedptexity and high dimen-
sionality of the search (or decision) space. Our optimizardws ideas fronMulti-
Objective Evolutionary Algorithms (MOEAsyhich have been shown effective in ob-
taining a set of non-dominated solutions in a single runhiliterature, several MOPs
were proposed in the content of Wireless Sensor Networkdviotile Networks [23,
26,27, 38], tackled in most cases by Pareto-dominance ha&deAs (e.g., the state-
of-the-art Non-Dominated Sorting Genetic Algorithm-II$&A-11) [15], Evolutionary
Multi-objective Crowding-based Algorithm (EMOCA) [37]i®) and in few cases by
decompositional MOEAs (e.g., Multi-Objective Evolutioga#lgorithms based on De-
composition (MOEA/D) [56]).

4 The SmartOpt Framework

In this section, we present the SmartOpt framework (seer&i@) that proceeds in
three phases: the Optimization phasealuring which a set of hon-dominated QRTs
(i.e., Pareto Front) is identified; ithe Decision Making Phaseluring which a non-
dominated QRTX is selected based on some user-preference criteria frofateto
Front; and iii)the Search Phaseluring which the QRT solutio®’ is propagated ta,;
and the search process is initiated.
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5

OPTIMIZER

v s
c) Decision Makin
@ o QP) (e) Search

SmartP2P

QUERY USER

Fig. 3. The SmartOpt framework with our SmartP2P prototype sysfejmA user posts a query

to the optimizer. (b) The optimizer obtains a set of non-dated solutions (PF) and send it back
to the user. (c) The user (decision maker) chooses a Papéitoad solution based on instant

requirements and preferences. (d) The optimizer forwardsselected Pareto-optimal QRT to
the user. (e) The user searches the P2P social network fxtslgf interest.

Our framework is founded on a MOEA, during which a populatarcandidate
solutions (a.k.a. chromosomes), evolve into better smhgt{w.r.t. the objective func-
tions), by utilizing a set of operators (e.g., selectiomsspver and mutation) that are
inspired by natural evolution. The given application of igters is inherently stochas-
tic, but applications to numerous domains such as bioindias, computational sci-
ence, engineering, economics and other fields, have shattMBEAs can be more
effective to difficult multi-objective optimization probins when domain knowledge is
incorporated to the operators [26]. In the context of Smatt@e introduce both do-
main expertise into our operators as well as utilize weltlhwkn operators that have been
proven accurate over the years.

Specifically in the Optimization Phase, we have implemeatsd specialized the
MOEA/D framework, which is the state-of-the-art of the degmsitional MOEAs
and the winner of the Unconstrained Multi-Objective Evmloary Algorithm com-
petition in the Congress of Evolutionary Computation, 200 initially proposed
a tree-based encoding representation suitable for the NRD-yoblem and we then
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designed a MOEA/D composed of our M-tournament selectigmaaxh and the two-
point crossover and random mutation genetic operatorsgisalty proposed by Zhang
and Li in [56]. Furthermore, we hybridized MOEA/D with a ptem-specific repair
heuristic for identifying infeasible solutions generateg the genetic operators and
converting them to feasible. In the Decision Making Phase prwoposed @osterior
approach for giving the opportunity to the user to visuatlipase a QRT, from the set
of Pareto-optimal QRTs obtained by the MOEA/D, based oraimntstequirements and
preferences; instead of choosing a Q&TPriori, without any knowledge on the ob-
tained Pareto Front, anteractivelythat consumes additional time and energy from the
Smartphone users. Finally in the Search Phase, our frarkavgess a fast text-based
Peer-to-Peer tree propagation protocol to retrieve objetinterest from the social
network.

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10’ X in Smartphone Network

x[tlala]s]1]al1]s]s5]a]

Fig.4. The query routing tre&’ representation (left) and conceptual structure (right).

4.1 Pre-Processing Steps of SmartOpt Optimizer

The pre-processing steps consists of representing a QRaAlesnmanposing the problem
into a set of scalar sub-problems.

Representation: In our approach, a solutiéh.X’ is a QRT with|G’| active smartphone
users that can participate in the resolutionchfWithout loss of generality, let’ be
represented as a vector in which each indeworresponds to a user; and the value
of that position corresponds tg’s parent. The root of the tree is the query user (for
simplicity noted asu;). A negative value-1 in any position indicates that the given
user is not currently selected in the query routing tkéeFigure 4 illustrates a query
routing treeX’ representation as well & in a smartphone network.

Decomposition: Initially, the MOP should be decomposed into subproblems by
adopting any technique for aggregating functions, e.@. Tithebycheff approach used

10 The termg'solution” , “vector” and“QRT” are utilized interchangeably.
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Algorithm 1 The SmartOpt Optimizer
Input:
e network parameters (e.d2, P, U, G);
e m : population size and number of subproblems;
e T neighborhood size;
e weight vectorgwj, ..., wj"), j = 1,2, 3;
e the maximum number of generationgymaz;
Output: set of non-dominated QRTs, known as the Pareto FrBiit)(
Step 0 (Setup): SetPF := 0; gen := 0; I Pyen = 0;
Step 1 (Initialization): Uniformly randomly generate an initial set of QRT, =
{xt,... x™}, known as the initial internal population;
Step 2.For i =1,... mdo
Step 2.1 (Genetic Operator s): Generate a new solution (i.e., QRY)using the genetic
operators.
Step 2.2 (Local heuristic): Apply a problem-specific repair heuristic ghto produce
Z.
Step 2.3 (Update Populations): Use Z to updatel Py, PF and theT closest neigh-
bor solutions ofZ.
Step 3 (Stopping criterion): If stopping criterion is satisfied, i.egen = genmaz, then
stop and outpuP F', otherwise gen = gen + 1, go to Step 2.

here. In this paper, th&" subproblem is in the form

maximize gi(X|w§-, 2") = max{wﬂfj(/'\’) - 27|} 4
where f;, j = 1,2,3, are the objectives of our MOP formulated earlier in Subsec-
tion 2.2,2* = (27,23, 23) is the reference point, i.e., the maximum objective value
27 = maz{f;(X) € 2} of each objectivef;, j = 1,2,3 and{? is the decision space.
For each Pareto-optimal solutioti* there exists a weight vectas such thatt™ is
the optimal solution of (4) and each solution is a Paretdormgitsolution of the MOP
in Subsection 2.2. For the remainder of this paper, we censiduniform spread of

the weightsw?, which remain fixed for each subproblerfor the whole evolution and
23:1 w; =1.

4.2 Optimization Phase

In this phase, SmartOpt optimizes in an online manner thdisol space using a set of
genetic operators. An outline of this phase is provided igofithm 1.

Initialization Step 1: In Step 1 of Algorithm 1, we adopt a random method to generate
m QRT solutions for the initial Internal Population (i.é ). Namely, a QRT solution

X isinitiated by setting each smartphone usgii = 1... M as a parent. Then, mobile
usersu;, j = 1... M are uniformly randomly selected, ang is set asu;’s parent iff

i # j andu, is either the root or has already a parent:Jfhas already a parent then
we stop and we set as parent the usgr . This continues until all users; are set as
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parents once. Thereinafter, thé,.,, is used to store the best QRT solutiai found
for each subproblemy’ during the search, i.e., in each generatjen.

Index: 1 2 3 4 5 6,7 8 9 10
P (L [A[1[a]1a[1]s5[5[1]
Pry L1 [1]2[3[1[3[a][a1]10]1 |
op [1[aJ1[s[1]3[1]s5][5]1]
O [1JaJz2]s3[1[a[afafw]1]

Fig.5. The Crossover operator of SmartOpt optimizer.

Genetic Operator Step 2.1: The genetic operators (i.e., selection, crossover and mu-
tation) are then invoked ohP for offspring reproduction, i.e., generate a new QRT
solution)* for each subproblem?,i = 1...m. The following steps summarize the
details of each operator:

— Selection: We utilize our M-Tournament tree selection [27] for selegtithe M
closest individual QRTSs from the neighborhood of each sobljemg®, which are
then added in a tournament and the two QRTs with the best ditaes selected
as parents for crossover. The given selection operatovslto easily adjust the
selection pressure, is simple to implement and works intemgme.

— Crossover (a.k.a. reproduction or recombination): allows our algorithm to gen-
erate new solutions that share many of the characterigticeffin parents, yet are
different QRTSs. In particular, thz-point tree crossoveoperator takes as an in-
put two parent QRT solutiong?r; and Prs, and subsequently generates two new
QRTsO1, O4, the offspring. The best offspring is finally selected as follows:

e Two crossover points; andxs are uniformly randomly selected from numbers
1 to M-1, wherer; < zs.

e The pieces of the pareni¥; and Pr,, falling within z; andz, are exchanged
to produce two offspring, e.gQ1, O-.

e The best offspring is then forwarded to the mutation operator, wh@re- O,
if g’(O1,w}) < ¢*(02,w}) andO = O, otherwise.
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The procedure of the 2x-point crossover is illustrated guFé 5 forM = 10.

— Swap Mutation: modifies an offspring to a solution)’ with a probabilityr,,, by
uniformly randomly swapping the values (i.e., parents mtitee) of two indexes
j, z of the QRTY . Figure 6 shows an example where a solutidof size M = 10
is processed by the mutation operator and based on the piitbparameterr,,
the indexes\, = —1 andXy = 5 are modified by swapping their values with those
of indexesX; = 1 and X, = 3, respectively, creating solutiori. This results in
assigning a parent t,, i.e., the rootl, and changing the parent &f, to 3. Note
that, X, had no parent, and therefore was not included in the treeréefutation.
Mutation operator is often used for improving exploratiodaonsequently the
diversity of the obtained solutions. The modified QRT salnf) is then forwarded
to the repair heuristic.

Mutated Solution

-
x[1{-)1{sh[ala)s{s]a] v[1]1]1]s]1]a][a]5]s
~_

-1|

Fig. 6. The swap mutation operator of the SmartOpt optimizer.

Repair Step 2.2: In Step 2.2 of Algorithm 1, a problem-specific local heudsthecks
a QRT solutiony and calculates a QRZ iff:

— Case#l: thereis a disconnected usgrin QRT Y (i.e.,u; with or without children
that does not have a parent);

— Case #2: two or more user ids of useru; are the same in QRY;

— Case #3: there is an infinite loop in QRY;

In all cases (illustrated in Figure 7), the solutidhis considered infeasible. An
infeasible solution can be generated during reproduciien @enetic operation). A
local heuristic repairs the QRT solutignto Z by: uniformly randomly generating a
parent for the disconnected userin Case #1, replacing the duplicate usgrwith
another uset; in Case #2, breaking the loop by connecting a random useedbtp
with another user out of the loop in Case #3. All repair teghes are shown with dotted
lines in Figure 7. The repair heuristic continuously repainlution)’ until it does not
fall in any of the Cases #1, #2 or #3. Solutignis then used to update the populations
of MOEA/D.
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Case #1: Disconnected user Case #2: Users with same ids Case #3: Infinite Loop

T
@ﬁa;ﬁ

repair

Fig. 7. The repair operator of SmartOpt optimizer.

repair

P o——— -

Population Update Step 2.3: In Step 2.3, the update phase of Algorithm 1 is pro-
cessed in three steps. (1) Upddte, IP/{X'} andIP U {Z'} if g;(Z'w’,2*) <
g (Xtwt, z*), otherwiseX'* remains inl P. (2) Update the neighborhood &f, i.e.,
the solutions of thd" closest subproblems ofn terms of their weight§w?, - - -, w™}
are updated. 1§’ (Z¢|w’, z*) < g7 (X7 |w?, 2*), thenI P/{X7} andI P U { 2%}, other-
wise X7 remainsinl P, wherej € {1,...,T'}. (3) Update the Pareto Froff® F), which
stores all the non-dominated solutions found so far dutiegearchPF = PFU{Z?}
if Z¢is not dominated by any solutiok’ € PF and PF = PF/{Xx7}, for all X7
dominated byZ?. The search stops after a per-defined number of generagions,,.,.

4.3 Decision Making Phase

In the posterior decision making phase used in this papewtiery uset:; is prompt
to decide its preference in terms Bime (i.e., Objective 2 calculated by Equation 2)
andRecall (i.e., Objective 3 calculated by Equation 3) of the queryostse to receive
from the Smartphone Network. The decision maker module cr8Dpt then finds the
QRT solutionX of the PF that best satisfies the user’s decision and it isthesmost
Energy efficient (i.e., Objective 1 calculated by Equation 1) atshene time. By this
way, u; is responsible to decide the user-oriented objective gdliue, time and recall)
and the decision maker module the system oriented objegive (i.e., energy), since
it is assumed that Smartphone users will not be interestemserving the overall
system energy of the network.

For example, consider that the SmartOpt optimizer has édahe PF of Figure 8
in Phase 1. The slidebar at the bottom of the figure is the qusys decision, where
w1 = 0.3 andw, = 0.7, s.t.wy + we = 1, correspond to the user’s preference in terms
of time and recall, respectively. Then, the decision makeduhe calculates and obtains
the solutionX that is closer (in terms of Euclidean distance) to the uskrtssion in the
objective space and provides Pareto optimal energy consum(pe., £’ in Figure 8)
at the same time. In cases where there are more than oneosdiudt equally satisfy
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Fig. 8. Decision Making example.

the user’s decision then the most energy efficient is saldctde searched. Figure 8
also shows solutiond, B andC that represent the extreme solutions of the PF. That
is, solution A represents the best Pareto optimal solution in terms of, imease that
the query user is only interested in receiving the resu#fts fally ignoring recall, i.e.,

w1 = 1,ws = 0. SolutionB represents the best Pareto optimal solution in terms of
recall, in case that the query user is only interested iniguat of information (recall),
fully ignoring the time, i.e.w; = 0,w, = 1. Finally, solutionC' represents the best
Pareto optimal solution in terms of energy that the decisiaker module automatically
selects, in case that the query user does not have a predesithaespect to the other
two objectives. The Pareto optimal QRY is then propagated ta; and the search
process is initiated in the following phase.

4.4 Search Phase

Inthe final phase, the query userreceives the Pareto-optimal tréefrom the decision
maker module of SmartOpt and proceeds with a recursive éraocf Algorithm 2 on

all smartphone devices participating in the tfée Recall thatY is a vector in which
each index corresponds to a usef (IP address and port) and the value of that position
corresponds ta;'s parent (IP address and port).

As soon as a smartphone devicereceivesQ it creates a saP); of all objectso;;
that satisfyQ (line 4). Immediately theny; transmits these objects to the query user
u (line 6) using the most efficient communication technology. ( bluetooth, 3G). In
the final step, the smartphone deviceforwards() to all its child nodes (lines 8-14).
This is done by checking each parent entrydmwith its own (line 11). If a match; is
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Algorithm 2 : Search Phase

Input: The Query Uset:1, A Pareto-optimal Query Routing Treg, A Query Q
Output: A set of object); = {01 ...0;x}.

1: procedure SEARCH(u1,X,Q)

2 if (j # 1)then

3: //Step 1: Find a set of local object®; that satisfyQ
4: 05 = Uy, 05i, satisfy(oji, Q)

5 //Step 2: Send local object®; to query useu;

6 Send(Oj,u1);

7

8

end if

: //Step 3: Forward queryt; to all children smartphone devices
9: for i = 1to|X| do

10: /lif j is the parent of
11: if (X[7] == j) then

12: Search(ui, X, Q);
13: end if

14: end for

15: end procedure

found,u; transmits@ andX to u; (line 12). This process executes recursively until all
smartphone devices iff receive the query.

45 Summary of SmartOpt Architecture

The proposed SmartOpt framework aims at obtaining a divengehigh quality set of
non-dominated QRT solutions (PF) by using a MOEA in the Ojztittion Phase (de-
tailed in Subsection 4.2). Then it opts for the best suitadt®zoptimal QRTY* € PF
based on instant requirements and preferences of the gsery udecision maker) in
the Decision Making Phase (Subsection 4.3). The query wisénen downloads and
utilizes QRT X to search the mobile social network and find objects of isterg
recorded by users; € X* and related to quer® in the Search Phase (detailed in
Subsection 4.4).

5 The SmartP2P Prototype System

In this section, we describe our prototype system, coinedr§?aP?, developed for the
ubiquitous Android Operating System to demonstrate théegiplity of the SmartOpt

framework. We particularly overview the GUI and protocotloé framework as well as
its evaluation on our programming cloud of Smartphones)ediSmartLab testbed.

11 Available at: http://smartp2p.cs.ucy.ac.cy/
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5.1 Overview

Our client-side software is developed around the SDK Taki?saf Android 2.2 and its
installation package (i.e., APK) has a size of 327KB. Ourecizdwritten in JAVA and

consists of around 7500 lines of code. In particular our esecode (i.e., optimizer)
uses 5000LOC and runs over JDK 6 and Ubuntu Linux, our smanipltode uses
1600 LOC plus 250 lines of XML elements. The server side alstudes a Microsoft
SQL server R2 and utilizes the IMATH-PLOT package for drawtime Pareto Front
images.

Fig.9. The SmartP2P Android GUI. (a) The intro screen. (b) The keyveearch optimization
with four algorithmic choices screen and (c) the resulte@d-ront screen for decision making.
(d) The results retrieved after initiating a P2P search ensthartphone network. (e) The QRT
selected by the query user and utilized to retrieve the thjgfanterest.

5.2 Graphical User Interface

The Graphical User Interface of our system provides a pimihterface for a user to
query the active users in the community (the details of tiredomol are presented in
the next paragraph.) Figure 9 (b) shows the GUI through whighery is formulated
in order to find objects of interest. The group of algorithrimices provided by the
SmartP2P framework is shown below the search box. SmartR&Rdps (i) two sim-
ple distributed choices, i.eRandom SearchndBreadth-First Searchas well as (ii)
two MOO choices, i.e., th1OEA based on Decomposition (MOEA/&)d theNon-
Dominated Sorting Genetic Algorithm 1l (NSGA:[The user selects an algorithm and
presses the “Go” button. Then the SmartP2P optimizer catlesila QRT in case (i) or
a Pareto Front in case (ii). In both cases, the result ismetlto the query user. The
decision maker is only enabled when the query user seleatgarthm from case (ii)
to perform the search. In this case, the Pareto Front is faleedhand displayed to the
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query user as shown in Figure 9 (c) (note that the image camntout for better
visualization). Then the query user makes use of the slidd&law the Pareto Front
image to set a desired level of time and recall of the seartie faitiated. Note that if
the user does not choose a desired level of those two olgsctive solution with the
minimum energy consumption is automatically chosen. Byggirgy the “Go” button,
the decision maker finds the QRT that is closer to the useogcehand downloads it
from the optimizer to the user’s smartphone. Finally, therguser initiates the search.
The results of the search as well as the selected QRT are tspilayed on the user’s
smartphone as shown in Figure 9 (d) and (e), respectively.

5.3 Protocol

We shall next provide an abstraction of the peer-to-pedppobthat lies at the founda-
tion of our prototype system. We chose to implement a tegetarotocol, as opposed
to a binary protocol, for portability (i.e., endiannessisens. We also did not chose an
XML-based protocol implementation for performance reas@m®., minimize annota-
tions.) At a high level, a smartphone user, denoted as QB stat in Step 1 by register-
ing its obfuscated location (e.g., vector of interceptdtitoever IDs or MAC addresses
of WiFi access points) to a well-known host-cache (i.e.,3h@artOpt SERVER in our
case.) The above function is carried out using the followmassage exchange:

-- STEP 1: REGQ STRATI ON

SERVER: +OK READY -- wel com ng nessage

QP CLI ENT: REG STER APPROX_LOCATI ON

SERVER: +OK 8734e604- 0f 79- 45ee-9126-f 71eaee540f5
<cl ose connection to SERVER>

After this exchange, the client is considered to be "corgmcto the service for a
pre-specified amount of time (i.€: seconds in our setting, after which the lease can be
renewed). The Globally Unique Identifier (i.e., GUID or UUIEeturned by the server
provides an easy mechanism to enforce registration witthdst-cache prior to any
other function as explained next and requires only minirteibson the server.

Now assume that a "connected” client QP wants to query theeanbdes in the
network. QP first issues a GET command to the SERVER, in stép &der to ob-
tain a tree that captures its optimization criterions (wilpect to time, energy and
recall.) Notice that the SERVER is already aware of the $ap@ph and other statis-
tics used in the optimization process. The issued commasupiglemented by a GUID
token returned during the registration step 1. The retutreslis serialized in the fol-
lowing format' * Nodel P: NodePort ( Par ent | P: Parent Port) '’ ,with -1 de-
noting no-parent but is shorten below for ease of exposifldre message exchange
proceeds as follows:

-- STEP 2: TREE RETRI EVAL
SERVER: +OK READY

12 Our system also supports command pipelining as opposedizing separate connections for
each step.
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QP CLIENT: GET T 8734e604- 0f 79- 45ee-9126-f 71eaee540f 5
SERVER PO(-1), P10(P0), P15(P0), P30(P10), NULL
<cl ose connection to SERVER>

Once T is obtained by QP, QP connect®t=r oot ( T) in step 3 and submits its
queryQ (i.e.,{k1,k2,...,kr}),its HOME_ADDR address (i.e., IP:PORT) as well as a hop
count parameter. PO then forwards these parameters to it<hildren (i.e., P10 and
P15), in a recursive manner for N levels (using a predetexchifime-To-Live (TTL)
value enforced by the hop count.) The messaging for the firsiethops (assuming
Depth-First-Search propagation), is as follows:

-- STEP 3: P2P SEARCH
PO CLI ENT: +OK READY

QP CLIENT: SEARCH O | HOMVE_ADDR | k1,k2,...,kn |
P10( - 1) | P30( P10) | NULL

-- next hop

P10 CLI ENT: +OK READY

PO CLIENT: SEARCH 1 | HOME_ADDR | k1,k2,...,kn |
P30(- 1) | NULL

-- next hop

P30 CLI ENT: +OK READY

P10 CLI ENT: SEARCH 2 | HOME_ADDR | k1,k2,...,kn | NULL

Any peer receiving Q, conducts a local search and informsifgetty on HOMEADDR
about possible answers. If a peer in T is not responding fa@tewer reason the given
branch of the tree is disregarded. The fact that the quesyigreptimized for minimum
delay, minimum energy and maximum recall provides an adgnbf our approach
compared to other approaches for unstructured P2P seielBreadth-First-Search,
Random Walks [33], as this is presented in our experimentdlation. In particular,
we found that the MO-QRT structure can greatly reduce thelrarmof search nodes, by
exploiting meta-relations captured in the social netwaglgraph and the user interests
matrix.

5.4 SmartLab: A Programming Cloud of Smartphones

Experimenting with a large number of devices can be a tedioosess as each device
needs to be connected to the programming station, the afiplimeeds to be installed
separately and the operator needs to manually launch ttamges on each device and
collect the results. In order to overcome the inherent @wis| of this setup we have
implementedSmartLab[?], an innovative programming cloud of approximately 40+
Android smartphones and tablets, which is deployed at thedusity of Cyprus (see
Figure 10). SmartLab is inspired by both PlanetLab [11] arudéMab [50]. Its intuitive
web-based interface is easy to use and provides the aliligserve and use Android
devices for a desired amount of time. Users are able to relispttransfer and re-
move files, change Android device settings by using theaatare Android Debugging
(ADB) shell session. Additionally, registered users catoag@ and install executable
APK files on their reserved Android devices simultaneouBhe SmartLab users are
also able to extract application data, output and resuttsaatically from all reserved
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devices, take screenshots as well as watch the display oésdtved devices during
runtime. Users are also granted access to log files for enezrception handling.

SmartLab

Programming Cloud Of Smartphones
o
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Fig. 10. The SmartLab programming cloud of smartphone devices

SmartLab supports four (4) modes of user interactioRdjnote Control Terminals
(RCT) which support our in-house implementation of an ajax-tageb-based remote
screen terminal for Android that can mimic user clicks anstgees such as sliding in
order to unlock devices and conduct other functionalitip&emote Shells (RSyhich
supports our in-house implementation of an ajax-basedhvesied shell that can be uti-
lized to issue a wide variety of known UNIX commands (el.g., ps, df, pwd,
dat e, etc.) to the Linux kernels that are found at the core of eantréid device;
iii) Remote Scripting Environment (R$&hich allows users to author Android Mon-
keyRunner automation scripts (written in python) in oraequiickly perform repetitive
tasks on selected devices; and R@mote Debug Tools (RDTWhich provides web-
based debugging extensions to the Android Debug Bridge (Ab& are used during

13 Available at: http://smartlab.cs.ucy.ac.cy/
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development. In this work, we have used SmartLab to evatuat&martOpt framework
under real conditions. A more detailed description of Stradytcan be found in [29].

6 Experimental Evaluation

In this section we present the experimental methodologyresults of our evaluation.

6.1 Evaluation Methodology

Our experimental methodology consists of two distinct sc®s: i) Trace-driven Sim-
ulation, during which we assess the quality of the SmartOpt optitiingprocess and
also assess the quality of the SmartOpt search algorithdnj)afrace-driven Real De-
ployment during which we deploy our SmartP2P real prototype systaplémented
in Android over up to 138 users using SmartLab and the traessribed next.

Datasets and Queries: In our experimental studies, we have constructed two mobile
social scenarios from the following three real datasets:

Geolife[57] (mobility): This real dataset by Microsoft Research Asia include8@,1
trajectories of a human moving in the city of Beijing overfa Bpan of two years (2007-
2009). The average length of each trajectoryds, 110 + 126, 590 points, while the
maximum trajectory length is 699,600 points. Notice tha#9&f the GeoLife dataset
refers to a granularity of 1 sample every 2-5 seconds or évdiy meters.

DBLP [13] (socia): This real dataset by the DBLP Computer Science Bibliogyap
website, includes over 1.4 million publications in XML foatnIn particular, the dataset
records the paper titles, paper urls, co-authors, linke/éen papers and authors and
other useful semantics. In order to map this dataset to calsl@m, we assume that
each object is an author’s paper. We also assume that eaett @bjtagged” by the
keywords found in the paper title.

Pics ‘n’ Trails [43, 42] (mobility and socigl: This is a real dataset composed of around
75 GPS traces of a user moving in Tokyo, Japan during 2007 aotlextion of geo-
tagged photos taken along with a short description. In pa#r, the dataset is com-
prised of 4179 photos in Japan as well as trajectories withaauarity of 1 sample
every 10-15 seconds.

In order to link the above datasets we have constructed twalensocial scenarios:

Mobile-Social Scenario 1 (MSS:1jses the DBLP social dataset and GeoLife mobility
dataset. The DBLP dataset is used to construct a social gfaghauthors that are
related based on their research interests (i.e., keywdrten articles’ titles) as well
as their co-authorships that are attributes of the DBLPsg#td’ hen we have mapped
each DBLP author to a trajectory of the Geolife datasetidtdatrly, we have extracted
1,100 authors from the DBLP dataset and we have mapped thiue 19100 trajectories
of the Geolife dataset using a 1:1 correspondence. Thistedsa a social graph with
1,100 mobile DBLP authors moving in the city of Beijing, Chin
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Mobile-Social Scenario 2 (MSS:2)ses the Pics ‘n’ Trails social and mobility dataset.
The Pics ‘n’ Trails dataset is initially used to constructomial graphG of 75 users
that are connected based on their interest in taking phdtsiglatseeing in Japan (i.e.,
similar tags on their photos taken). Each user is, theref@meying a random number
of photos tagged with a short description that describestacpbar sightseeing in Japan
and is associated with a GPS trajectory from the Pics ‘n’I3mdataset. This resulted
in a social graph with mobile users that carry photos witts taigd move in the city of
Tokyo, Japan.

In our experiments, we utilize the following three queries:
-- Query 1
SELECT S.title, S url
FROM Smart phoneUsers S, Query Q
WHERE (di stance(S.x,S.y,Qx,Qy) < 10 KM

AND S. Title LIKE ' %optinm zati on% ;

-- Query 2

SELECT S.title, S. url

FROM Smart phoneUsers S, Query Q

WHERE (di stance(S.x,S.y,Qx,Qy) < 10 KM
AND S. Title LIKE ' %etworks% ;

-- Query 3

SELECT S.title, S. url

FROM Smart phoneUsers S, Query Q

WHERE (di stance(S.x,S.y,Qx,Qy) < 10 KM
AND S. Title LIKE ' %Kyot 0% ;

where “S.x,S.y” represent the:(y) coordinates of a Smartphone userSnand
“Q.x,Q.y" represent thex(, y) coordinates of the query user.
We execute nine different test instances using the two MeBdcial Scenarios and the
three queries, Query 1, Query 2 and Query 3 as shown on Taller2scenarios are
executed for various time periods (i.e., during the mornihgring noon and during
night), in order to capture different mobility patternsttla@ae inherent in the GeoLife
and Pics ‘n’ Trails datasets.

Algorithms and Evaluation Metrics: We have implemented both the i) optimization
and ii) search algorithms, analyzed earlier in this papedescribed next:

— Search Algorithms: We have implemented i) th€entralized Searclalgorithm
(CS), presented in Section 2.1, which collects all data and da¢tatags at the
centralized query processor prior query execution; iiDistributed Breadth-First-
Search Searcl{BF'S), which conducts a distributed search using a random tree
that is generated with a BFS process which visits all nodésdmetwork, as pre-
sented in Section 2.1; iii) thRandom Walker (RW) Sear§B3], which conducts
a distributed search using a list structure that capturesmxdamly chosen neigh-
bor on each step but that eventually visits all nodes in thevor&. and iv) the
SmartOpt Search, which conducts a distributed search wsingptimized QRT



Table 2. Experimental Execution Scenarios and Test Instances.

|Scenario[Test Instance] Q| Time |G'[# Objects|Relevant Objects|

T1 QuerylMorning|49 3877 82
T2 Queryl Noon |58 5504 73
MSS-1 T3 Queryl Night |95 8884 121
T4 QueryZMorning|49 3877 319
T5 Query4 Noon |58 5504 477
T6 Query2 Night |95 8884 695
T7 Query3Morning|26| 744 43
MSS-2 T8 Queryd Noon |66 1877 115
T9 Query3 Night [47] 1456 92

obtained from the application of ideas presented in thiepg&martOpt trees are
inherently smaller in size, than their other alternatiasshis structure visits with a
higher probability the nodes having more relevant objeaats, pased on the social
graph and the metadata stored for each node.) We evaluasedheh algorithms,
in Experimental Series 1 (simulation) and Series 4 (reala@pent), using the fol-
lowing metrics:Time EnergyandRecall as these were defined in Section 2.2. For
the simulation we use the time and energy profiles for our §hane devices we
have presented in Section 2.1. For the real deployment, Mizeuwall clock time
along with the PowerTutor [55] power (energy) measuring byothe University
of Michigan, USA. In particular, PowerTutor is a componeater management
and activity state introspection based tool that uses amaated power model con-
struction technique for accurate online power estimationdroid.

Multi-Objective Optimization Algorithms: In order to assess the efficiency of
the tree construction process, we have implemented Smiaugdyg two alterna-
tive approaches: i) the MOEA/D approach, as this was destiio Section 4; and
i) the Non-dominated Sorting Genetic Algorithm-11 (NSAR{15], which main-
tains a populatio P,,, of sizem at each generatiogen, for gen,,., genera-
tions. NSGA-II adopts the same evolutionary operators ffapoing reproduction
as SmartOpt-MOEA/D. The key characteristic of SmartOpGMSl is that it uses
a fast non-dominated sorting and a crowded distance e#imfar comparing the
quality of different solutions during selection as well asipdate thd P,.,, and the
PF. The optimization algorithms are evaluated with respect) tBxecution Time
for GeneratingX’ (Experimental Series 2); and iNlulti-Objective Optimization
Quality for Generatingt (Experimental Series 3).

For the former case (execution time), we measure the CPU&mered for the op-
timizer to deriveX using both MOEA/D and NSGA-II. For the latter case (quality)
we use the following combination of metrics:

e C(A, B)-metric[60] (quality), which calculates the ratio of the non-dostied
solutions in se3 dominated by the non-dominated solutionsdindivided by
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the total number of non-dominated solutionginHence,

{reB|Fye A:y >z}

C(A,B) = | 5

Therefore(C(A, B) = 1 means that all non-dominated solutiondrare dom-
inated by the non-dominated solutionsinNote thatC'(4, B) # 1-C(B, A).

e S(A)-metric [59] (diversity), which measures the diversity dfs solutions,
formally the hyper-volume in the objective space that is aated by the
Pareto optimal solutions of sét Again a lowerS(A), denotes that algorithm
A has better diversity.

e NDS(A)-metric(cardinality), which measures the number of non-dominated
solutions inA’s PF. The higher the NDS(A) score, the better algorithiis.

6.2 Seriesl: Evaluating SmartOpt Search

In the first experimental series, we evaluate the performafiche SmartOpt search
phase against the CS, BFS and RW on 100 consecutive timestanyobile-Social
scenario 1 (GeoLife+DBLP) using our model-driven simulafi eachtimestamp (ts)
we compare the energy consumption, time overhead and méallalgorithms.

Figure 11 illustrates the results of our experiment for alffprmance metrics. In
Figure 11 (top/left) we observe that the energy consumptifoSmartOpt is one to
two orders of magnitude smaller than its competitor CS, BR& RW in all times-
tamps. BFS seems more efficient than CS as it does not comaterilt metadata to
the centralized query node. On the other hand, RW is worseatapproaches as the
sequential visit to all nodes in the network drains congitierenergy (i.e., in each com-
munication only 1 message is sent, as opposed to the resiqeels that communicate
with several nodes in a single round.)

Similar observations apply for Figure 11 (top/right) wher@ demonstrate the time
overhead for all algorithms. This happens as the energydapagstional to the time
interval the communication transceiver is in active moder&dver in Figure 11 (bot-
tom/left), we show that the recall rate for the SmartOpt fearork is close to 95%
consistently. Consequently, although we consume lessairdéess energy, we are able
to identify all expected answers.

In Figure 11 (bottom,right), we demonstrate the results&aingle timestamp
(ts=70) for all algorithms. The various solutions generatedhyartOpt optimizer are
represented by open squares. The single solutions sugplite CS, RW and BFS
algorithms are represented by a solid triangle, a solidregaiad a solid circle, respec-
tively. We observe that the solution provided by the CS atoris the worst w.r.t. BFS
and RW in all three performance metrics.

However, the CS algorithm demonstrates higher recall (10%&) all solutions pro-
vided by the SmartOpt framework. This occurs because, G&tdiglobal participa-
tion by all smart objects in the network (i.e., all smart aibgeforward their results to
the query user). However, this has a significantly negatiygaict on both energy and
performance. Specifically, compared to the SmartOpt béstisns, CS, BFS and RW
feature an increase of two orders of magnitude in energy aedaler of magnitude in
time.
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Fig. 11. Evaluation of the CS, BFS, RW and SmartOpt search algorithsirgy the energy, time
and recall performance. The bottom/right figure shows SBrtompared to the solutions of
CS and BFS in the objective space at timestas®Y0 of Mobile-Social Scenario-1 (MSS-1).

6.3 Series2: Execution Timefor Generating X's (PF)

In the second experimental series, we aim to identify wireBmeartOpt generates the
expected tree solutions quickly enough. We consequendiuate the performance of
the SmartOpt-MOEA/D and SmartOpt-NSGA-II approachesiimteof CPU time. We
benchmark each algorithm by recording the time requireckéz@te the four steps of
the optimization phase described in Section 4.2, on all téstinstances. The results
of our experiment are illustrated in Figure 12.

We observe that SmartOpt-MOEA/D always outperforms Snatrt@SGA-II in
terms of CPU performance. This is more evident in test icsta4, T5, T6 where the
performance increases of SmartOpt-MOEA/D reaches as ki§o%. This is because
the decomposition of SmartOpt-MOEA/D naturally maintaimsdiversity of the popu-
lation, thus balancing the effort required for generatiolgsons in optimal areas of the
objective space. In contrast, the crowding distance mashaaf SmartOpt-NSGA-II
used for maintaining diversity, may result in additiondbeffor obtaining solutions in
the optimal areas of the objective space. Moreover, theath@PU effort required in
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Fig. 12. Evaluation of SmartOpt-MOEA/D vs. SmartOpt-NSGA-II inrres of CPU performance
in all nine test instances of MSS-1 (GeoLife+DBLP) and MSBi&s ‘n’ Trails).

mobile social scenario 2 (i.e., T7, T8 and T9) is lower fortbBtOEAS, since the size
of the Pics ‘n’ Trails dataset is smaller than the GeolLifetPRlatasets.

6.4 Series3: Multi-Objective Optimization Quality of Generated X’s (PF)

In the third experimental series, we study the quality of @R trees generated with the
SmartOpt-MOEA/D and SmartOpt-NSGA-II optimizers. In oxperiments, we have
used the following algorithm setting: population size= 200, crossover rate,. = 1,
mutation rater,,, = 0.1, gen,q = 250 andT = 12:

Figure 13 compares the performance of the two algorithmsimlgnations of two
of the three objectives as well as all together in a 3D viewe Tésults indicate the
superiority of SmartOpt-MOEA/D along the direction of diketthree objectives, giv-
ing non-dominated solutions of higher recall, of lower gyeconsumption as well
as of lower time overhead. Besides, the 3-D subfigure (d) gfifei 13 indicates that
SmartOpt-MOEA/D searches the space more efficiently gibieiger diversity. More-
over, we observe that SmartOpt-NSGA-II obtains a higherlmemof NDS compared
to SmartOpt-MOEA/D. However, these solutions are of irfequality due to its low
convergence speed.

Furthermore, the statistical results summarized in Tabt®rBpare the two ap-
proaches in all nine test instances of Table 2, supportiegottservations just men-
tioned. That is, the non-dominated solutions obtained bar8dpt-MOEA/D are of
higher quality (i.e.(C-metric) compared to those obtained by SmartOpt-NSGA-4llin
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Fig. 13. Evaluation of MOEA/D vs. NSGA-II using the energy, time aedall performance met-
rics in Mobile-Social Scenario-1(MSS-1).

cases. For example, none of the solutions obtained by SpaMOEA/D are domi-
nated by those of SmartOpt-NSGA-II's and all of the solusianSmartOpt-NSGA-II's
PF are dominated by those of SmartOpt-MOEA/[@Ssifetric) in MSS-1. Furthermore,
the hyper-volume S-metric indicates that SmartOpt-MOEA#Aarches the objective
space more effectively and provide a more diverse PF in adl tést instances. NSGA-
I, however, provides a higher number of NDSs for the deadisiaker to choose, but
they are of inferior quality.

6.5 Series4: SmartP2P Prototype Evaluation on SmartL ab

In the last experimental series 4, we evaluate our SmartP@@tppe Android im-
plementation, presented in Section 5, over our distrib@etartLab infrastructure as
illustrated in Figure 14. For the evaluation, we focus omtlee distributed search al-
gorithms:BFS, RWand SmartP2P We present the query response time, measured
seconds and energy consumption, measured with Powerfufdatis and presented in
Joules. We utilize five different network sizes in Mobile @b&cenario 1 (MSS-1): 20,

n
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Table 3. SmartOpt-M OEA/D (denoted as M) versusSmartOpt-NSGA-I| (denoted as N) in
terms of quality, diversity and cardinality of the PF, inilhe test instances of Table 2. The best
performance in each case is given in bold. The mean and théasthdeviation (SD) is provided
for each metric.

[ TIs [C(M ,N)[C(N,M)[NDSM)[NDS(N)[S(M)x10~*[S(N)x10

T1 1.00 | 0.00 112 188 0.10 3.62
T2 100 | 0.00 125 200 0.01 0.57
T3 1.00 | 0.00 172 200 0.07 6.31
T4 1.00 | 0.00 200 200 0.70 15.02
T5 100 | 0.00 200 200 3.45 81.17

T6 1.00 | 0.00 200 200 0.80 127.25
T7 096 | 0.04 49 95 0.294 0.304
T8 095 | 0.04 95 200 0.4403 1.47
T9 0.89 0.1 58 200 0.523 1.77

Mean ()| 0.98 | 0.02 | 134.56| 187.00 0.71 26.39
Stddevg)| 0.04 | 0.03 | 60.82 | 34.73 1.06 45.82

49, 58, 95 and 138 and five different network sizes in Mobilei&dScenario 2 (MSS-
2): 20, 35, 50, 61 and 75 to show the scalability aspects otliffierent search algo-
rithms. In order to accommodate these instances over aqaiysfrastructure, which
was considerably smaller (i.e., 40+ smartphones), we hadrigeveral instances on
each of the available physical smartphones (using sepswaket servers). For exam-
ple, an HTC Desire smartphone could easily host tens ofriesgwithout any par-
ticular performance penalty (recall that these are 1GHzrtghanes with 512MB of
RAM) while the lower-end HTC Hero devices (with a 512MHz pessor and 288MB
of RAM) were excluded from our experiments as they were asrably slower and
could not host tens of instances. For practical reasons eveatiutilize the Blue-tooth
connection between instances and considered as a loc#@h&rdocket communication
of instances on the same physical smartphone host.

Figure 15 (a), presents the response time for the diffeneetigions given that
all algorithms obtain the complete result set (i.e., maximnecall) in mobile-social
scenario 1. We observe that SmartP2P obtains the expedteeiam little anywhere
between 1.5 seconds and 6 seconds while both BFS and RWeeénuirany cases as
much as 10 seconds. The competitive advantage of SmartR2®oth BFS and RW
is considerably better for larger network sizes. This ig/\rcouraging as Smartphone
Networks might consist of thousands of nodes in an area efést (i.e., within the
spatial boundary of a query.) Figure 15 (b), presents theggremnsumption in mobile-
social scenario 1 as this was measured by PowerTutor (nb. tloe energy related to
CPU and Networking without taking into account costs relatel CD utilization.) The
given figure shows that SmartP2P manages to locate the cangplswer set utilizing
25% and 33% less energy than RW and BFS, respectively. Wenalsced that by
bringing down the recall expectation 4680%, would allow us to obtain great energy
savings considerably fasterz$0%). Similarly, Figures 15 (c) and (d) show that the
SmartP2P search approach is more efficient than the BFS andwvthin MSS-2 as
well. In particular, SmartP2P conserves up to 30% time afdd 6ergy for max recall.
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Fig. 14. A screenshot of the SmartP2P on SmartLab

7 Conclusions

In this paper, we present the SmartOpt framework for seagcbbjects captured by
the users in a mobile social community. Our framework, isnfiled on arin-situ data
storage model and searches then take place over the MO-Q@iRXuse we propose
in this paper. Our structure concurrently optimizes sdveaflicting objectives (i.e.,
energy, time and recall). Our experimental assessmentsase-driven experimental
methodology with mobility and social patterns derived bychMsoft's Geolife project,
DBLP and Pics ‘n’ Trails, but also uses our real SmartP2Resysteveloped in Android
and deployed over our SmartLab testbed of 40+ smartphorieedeOur study reveals
that our framework yields high query recall rates of 95%hvahe order of magnitude
less time and two orders of magnitude less energy than itpettors. Additionally, our
study reveals that the MO-QRT structure is highly apprdpriar content search and
retrieval in Smartphone Networks. In the future, we planne-fiune our peer-to-peer
search application and experiment with larger communitfessers.
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